Description
ABSTRACT
The aim of this project was to construct shell and tube heat exchanger with fixed boundless. A heat exchanger that would cool 5 x 5 x 10 – 3 kg/s of steam at a calculated heat load of 152 – 395/S was fabricated. The steam is to reach the heat exchanger from a distillation column at a temperature of 300k. The specification of the layout as well as the detailed mechanical design were assumed and also calculated.
It is established that a horizontal heat exchanger with cold water at the shall side and the treated steam at the tube side is adequate for this operation, with the aim of cooling the steam from the distillation column.
The available area obtained from calculation is 1.0m2 and also the overall heat transfer coefficient obtained is 4.10W/M2k. it is also seen that the heat exchanger is satisfactory and consists of five copper tubes of inside diameter 90mm and 5920mm length. The shell inside diameter 810mm and 5.770mm length. The tube and shell heat exchanger has a total length of 5820mm.
The material of construction for the shell side is stainless steel while copper tubes were used for the tubes inside.
The total cost of the heat exchanger was N12,000.
TABLE OF CONTENTS
Title Page
Approval page
Letter of transmitted
Dedication
Acknowledgements
Abstract
Table of contents
CHAPTER ONE
1.1 Introduction
CHAPTER TWO
2.0 Literature Review
2.1 General Design of Heat Exchanger
2.2 Tubular Heat Exchanger
2.3 Design Description of the Major Components
2.4 Tubes
2.5 Tube Bundles
2.6 Shells
2.7 Baffle
2.8 Tie Road Spacers
2.9 Pass Partition Plates
CHAPTER THREE
3.0 Fabrication Procedures
3.1 Dimensioning and Marking Out
3.2 Cutting
3.3 Folding or Rolling
3.4 Drilling operation
3.5 Assembling Process
3.6 Welding Operation
3.7 Filling
3.8 Dimensions and Parameters Derived
3.9 From the Fabrication Units
CHAPTER FOUR
4.0 Costing
CHAPTER FIVE
5.0 Discussion
CHAPTER SIX
6.0 Conclusion
6.1 Recommendations
CHAPTER SEVEN
7.0 Notation and Nomenclature
References
Appendix
Physical Properties of Water
Calculation of the Head Load